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Microbial community assembly is affected by the trade-off between deterministic and

stochastic processes, but the mechanisms underpinning their relative influences

remain elusive. This knowledge gap strongly limits our ability to predict the effect of

environmental filtering on microbial community structure and function. To improve

the understanding of mechanisms underlying community assembly processes, we

investigated bacterial community structure and function on a subalpine shady slope

and a sunny slope in the Pangquangou National Nature Reserve in North China. By

integrating the results of a null model and the RC metric, we inferred that a

deterministic process, that is, environmental filtering, drove bacterial community

biogeographical patterns. Edaphic factors caused the largest contribution tomicrobial

community structure, followed by vegetation and spatial variables. Among edaphic

factors, total carbon (TC) and total nitrogen (TN) were the most important factors as

determined by redundancy analysis (RDA). Moreover, network analysis suggested

that the status of bacterial community co-occurrence was significantly greater than

that of exclusive relationships. Under environmental stress, there was no significant

difference in the overall bacterial community structure on the different slopes, while

significant differences were observed in relation to community functions. Given this,

we inferred that the degrees of response of bacterial community structure and function

to varying environments were not consistent. In conclusion, our results contribute to

the understanding of deterministic versus stochastic balance in bacterial community

assembly and the response mechanisms of community structure and function to

environmental heterogeneity.
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1 | INTRODUCTION

The relative importance of deterministic versus stochastic
processes that underlie community dynamics has long been a
central topic in ecology, albeit under different guises in
different times [1,2]. The deterministic process of community
assembly emphasizes that niche-based processes (such as
environmental filtering and interspecific relationships)

determine the presence/absence and relative abundance of
species [3–6]. In contrast, the stochastic process asserts that
the community assembly pattern is simply governed by
neutral stochastic factors such as ecological drift, dispersal
and speciation [7,8] and assumes that species are all
ecologically equivalent [9]. An increasing number of
ecologists appreciate that the two ecological processes are
not mutually exclusive, but rather are a continuum [10]. This
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continuum can be generally understood as the trade-off
between the deterministic and the stochastic processes.
Nevertheless, Clark [11], who argued that stochasticity could
occur only in mathematical models and not in nature,
questioned the universality of this continuum hypothesis [12].
Therefore, to test the hypothesis and to interpret a global map
of bacterial diversity patterns, more efforts are necessary to
characterize the biogeographic patterns and assembly
processes in different environmental contexts and/or under
different conditions.

Microbial communities have high taxonomic and meta-
bolic diversity [7,13] and perform important ecological
functions [6]. Thus, the assembly processes of soil microbial
communities have attracted increasing interest recently [4,5].
However, there are still some controversies relative to the
assembly mechanisms of soil microbial communities at
different space-time scales [13]. For example, along the well-
established glacier forefront chronosequence, a fungal
community was found to be initially strongly governed by
deterministic processes but less so later [14]. Stochastic
processes may dominate microbial community assembly
within successional stages while deterministic processes may
prevail during transition periods between successional
stages [15]. These studies confirmed the importance of the
trade-off between the two ecological processes on community
assembly processes [16,17], and this trade-off may be
dependent on varying environmental conditions or the
characteristics of organisms [13]. However, studies focused
on the mechanisms of community assembly are limited to
specific spatial and temporal scales or sampling scales, and
lack of a common standard.

Microbial community composition can display complex
variation across spatial or environmental conditions, such as
through the ocean water column [18], or an altitudinal
gradient in alpine forest soils [19], and this variation can have
effects on ecosystem functions [20]. In addition, an increasing
number of researches has confirmed that the potential
metabolic functions of a microbial community is closely
related to environmental conditions [21–23]. However, the
mechanisms shaping these conditions remain poorly under-
stood, since the aggregate of multiple mechanisms severely
complicates the identification of causal relationships [20].
Therefore, the effect of influential mechanisms of environ-
mental factors onmicrobial community structure and function
needs more attention.

In this study, we investigated the microbial community
structure and function on shady and sunny slopes of a
subalpine area located in the Pangquangou National Nature
Reserve in North China. The environmental stress in a
subalpine area, such as altitudinal gradients, slopes, and
vegetation types, can provide an ideal platform for insight into
microbial community assembly mechanisms. Progress in our
general understanding of the trade-off between deterministic

versus stochastic processes in community ecology can be
facilitated to allow for an improved ability to draw inferences
about the ecological processes from various kinds of
observations and experiments. The study presented herein
was initiated to investigate: (i) the relative roles that
deterministic and stochastic processes played in community
assembly; (ii) how environmental filtering affected the
microbial community structure and community function;
and (iii) in terms of the degree that response to environmental
filtering, whether the structure and function of the microbial
community were consistent.

2 | MATERIALS AND METHODS

2.1 | Site description and soil sampling

Sampling was conducted in the Pangquangou National
Nature Reserve (111°32′ E, 37°53′N) in August 2016
(Figure 1). Study sites were initiated on the timberline
ecotones between 1950 and 2400 m above mean sea level.
Samples were collected across a number of zones, with 18
samples in total. We sampled plots on both slopes of
subalpine timberline ecotones with three replicates: in the
meadow of a shady slope (SHM), in the timberline of a
shady slope (SHT), under the forests of a shady slope
(SHU), in the meadow of a sunny slope (SUM), in the
timberline of a sunny slope (SUT), and under the forests of a
sunny slope (SUU). The distance between each sampling
plot was more than 50 m. All samples were collected from
the 0–10 cm soil horizon. Soil samples were kept on ice
when transported to the laboratory and were sieved through
2 mm meshes to remove roots and stones. Soil samples were
preserved at −80 °C for further analysis.

2.2 | Soil biogeochemical and vegetation
measurements

Soil temperature and soil respiration were measured in situ
by Portable Gas Analysis System (Li-cor, Lincoln, USA)
and Soil Respiration Chamber (Li-6400-09, USA). Soil
moisture was measured by Portable Moisture Meter (Jia shi
Technology, China). In the laboratory, soil total carbon
(TC), total nitrogen (TN), and total sulfur (TS) were
measured by using Elemental Analyzer (vario EL/MACRO
cube, Germany); nitrate nitrogen (NO�

3 -N), ammonium
nitrogen (NHþ

4 -N), and nitrite nitrogen (NO�
2 -N) were

quantified by Automated Discrete Analysis Instrument
(CleverChem 380, Germany). Soil pH was measured using
a pH Meter (Hl 3221, Italy) after shaking a soil water
suspension (1:2.5 mass/volume) for 30 min. An area of
1 × 1 m was selected in each plot to measure vegetation
attributes. Vegetation indices included total coverage,
height, and abundance.
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2.3 | Soil DNA extraction, purification, and
quantitation

Soil DNA was extracted from 1 g soil by using the E.Z.N.A.
®Soil DNA Kit (OMEGA, USA) (Supporting Information
Figure S1). The quality and quantity of DNA extracts were
measured using a Plate Reader Infinite 200 PRO (TECAN,
Switzerland). Purity DNA was assessed by determination of
A260/A280 ratios. Only DNA extracts with absorbance ratios
of 1.8–2.0 were used for bacterial community analyses. The
DNA samples from the same vegetation types were mixed
into one and sequenced (i.e., a total 6 samples were
sequenced).

2.4 | Nucleic acid sequences

High-throughput sequencing was conducted on the
bacterial v3-v4 hypervariable region with universal 16S
rRNA primers 341F and 806R by Shanghai Personal
Biotechnology Co., Ltd using the Illumina MiSeq plat-
form [23]. Sequencing data were analyzed by the QIIME
(v1.8.0, http://qiime.org/) pipeline. Filtered sequence
alignments were denoised by DeNoiser and then screened
for chimeras by UCHIME [24]. Eukaryota, Archaea, and
unknown sequences were removed. Sequences were
clustered into operational taxonomic units (OTUs) at a
97% similarity level by the average neighbor method and
taxonomy was assigned using Blast to the SILVA database
by a k-mer searching method using MOTHUR. The
information of sequencing is listed in the supplementary
material (Supporting Information Table S1). Raw sequence
data of bacterial 16S rRNA genes has been deposited into
the NCBI GenBank under the study accession number
SRP135838.

2.5 | Real time qPCR for quantification of
abundance of functional genes

Four target genes were quantified, including bacterial 16S
rRNA genes and three bacterial functional genes (i.e.,
cbbM [25], amylase [26], and cellulose [27]). The
cbbM gene encodes key enzymes of the Calvin-Benson-
Bassham (CBB) cycle [25]. The amylase gene encodes
products within the α-amylase family, which consists of
several enzymes that share a number of common character-
istics. These include a parallel barrel structure and enzymatic
reactions that act on α-glycosidic bonds that are hydrolyzed to
yield α-anomeric mono- or oligosaccharides [26]. Cellulose-
degrading enzymes (cellulose) have been described as
members of the superfamily of glycoside hydrolases (GH)
in at least ten GH families [27]. Abundances of these genes
represent the potential functions of bacterial communities.

All qPCR assays were performed triplicate by using a
CFX96 system (BioRad, USA). Template DNA concen-
trations and plasmid DNA concentrations were quantified by
using Infinite M200 PRO (TECAN, Switzerland) and the
DNA concentration of each sample was adjusted to a
concentration of 10 ng μl−1. Primers selected for qPCR
quantification of the 16S rRNA, cbbM, amylase, and
cellulose genes are listed in the supplementary material
(Supporting Information Table S2), as are the qPCR reaction
conditions (Supporting Information Table S3).

Gene copy numbers were calculated from standard
curves. Standard curves were constructed from PCR
amplicon products of target gene fragments extracted from
agarose gel with a Gel Extraction Kit (TIANGEN, China).
The purified product was connected to a pMD®18-T plasmid
vector (Takara Bio, Dalian), and transformed into competent
Escherichia coli DH5α cells. Transformant cells were plated

FIGURE 1 Sketch map of sample plots. The subalpine timberline ecotone ranged from the canopy forest to the subalpine meadow

ZHAO ET AL. | 339

http://qiime.org/


on agar plates supplemented with 1 ml AMP, 5 ml IPTG, and
0.8 ml X-Gal for each liter of Luria-Bertani (LB) and were
incubated at 37 °C. Positive clones were sub-cultured into
fresh LB. Plasmids were then extracted from the correct insert
clones for each target gene and used as standards for
quantitative analyses. Ten-fold serial dilutions of known
copies of plasmid DNA were then subjected to qPCR in
triplicate to generate an external standard curve. A dilution
series of 108–103 gene copies was used as standards in each
qPCR run. Efficiencies for the PCR reactions were 81.3% for
cbbM, 79% for amylase, 86.8% for cellulose, and 101.1% for
16S rDNA.

2.6 | Statistical analyses

The β-diversity null deviation approach takes advantage of a
null model to create stochastically assembled communities
from the regional species pool in order to determine the
degree to which the observed β-diversity patterns deviate
from stochastic assembly [28,29]. Null deviation is the
deviation between the observed value and the null expecta-
tion. Large deviations from the null expectation suggest a
strong role for deterministic processes, whereas smaller
deviations indicate that stochastic processes prevail [14,29].
Detailed process descriptions provided in Tucker et al. [28].

To identify more details in the roles and the weight of the
different community assembly mechanisms, a slight modifi-
cation of the Raup-Crick (RC) index was also used to
disentangle the underlying assembly mechanisms [30]. The R
script of the model used can be found at https://github.com/
stegen/Stegen_etal_ISME_2013. The RC probability metric
indicates whether local communities are more dissimilar (i.e.,
values closer to 1), dissimilar (i.e., values near 0), or less
dissimilar (i.e., values closer to−1), than expected by random
chance.

By analyzing and integrating the above two methods of
community assembly processes, a new perspective can be
proposed for understanding community assembly
mechanisms.

Ecological analyses (e.g., species diversity analysis) were
performed using the Vegan package (v2.4-1) in R. Principal
coordinates analysis (PCoA) was used to visualize ordination
of the microbial community structure. Redundancy analysis
(RDA) was used to evaluate the link between microbial
community composition and environmental attributes. The
principal coordinates of neighbor matrix (PCNM) eigenfunc-
tions, which represent the spectral decomposition of the
spatial relationship across sampling locations, can be
considered as the spatial variables in the ordination-based
analysis. The PCNM was completed by the pcnm package in
R. The partial least-square (PLS) method path modeling is
typically referred to as the partial least-square method
approach to structural equation modeling (SEM). This

analysis revealed direct and indirect effects of different
latent variables, and was completed by the plspm package in
R. Network analysis was used to investigate the patterns of
microbial communities and the interaction of species [31].
The package igraph was used to visualize the network
relationships of dominant species. LDA Effect Size (LEfSe)
is an algorithm for high-dimensional biomarker discovery and
explanation that identifies taxa characterizing the differences
between different slopes (http://huttenhower.sph.harvard.
edu/galaxy/). The Venn diagram can be used to visualize
the shared OTUs, and was completed by VennDiagram
package in R. Analysis of similarities (ANOSIM) was used to
determine whether there was a significant difference in the
bacterial community structure or functional attributes on
different slopes.

3 | RESULTS

3.1 | Soil physicochemical factors
and above-ground vegetation

TC, TN, TS, the ratio of carbon and nitrogen (C/N), NHþ
4 -N,

NO�
3 -N, and NO�

2 -N significantly varied among sample
plots (p< 0.05), indicating that soil fertility varied
significantly in this area. Although the divergence in pH
was significantly associated with sampling sites (P< 0.05)
(Table 1), soil respiration was not. In addition, the diversity
indexes of above-ground vegetation varied among different
plots (Figure 2). The Shannon index was higher in SUU site
(1.66) and in SHU site (1.64) than other plots, indicating
that species richness of forest vegetation on both shady and
sunny slopes were higher than any others. Variance of
environmental factors formed an ecological gradient across
different slopes. Based on this ecological gradient, this
study aimed to explore the driving factors that governed the
structure of the soil bacterial communities and community
function.

3.2 | Distribution pattern of soil bacterial
communities

A total of 733 OTUs were identified by 105,655 high-quality
sequences recovered from six soil samples. Good's coverage
ranged from 98.91% to 99.59%, indicating that sequences
identified represent the majority of bacterial sequences in the
collected soil samples. TheOTU rarefaction curves are shown
in Supporting Information Figure S2. In the rarefaction
curves, when the curve tends to be flat, the number of samples
can be considered sufficient and indicates that further samples
would detect only a small amount of additional OTUs.

Both the Chao1 index and ACE index were higher in the
SHM site (2705 and 3221.63, respectively), and lower in the
SUM site (2127 and 3015.25, respectively) (Table 2). The
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TABLE 1 Soil physicochemical characteristics among the different plots

Plots
SHM (shady
slope meadow)

SHT (shady slope
timberline)

SHU (shady
slope forest)

SUM (sunny
slope meadow)

SUT (sunny slope
timberline)

SUU (sunny
slope forest)

Elevation (m) 2552 2496 2473 2589 2566 2531

pH 6.21 ± 0.03ab 6.39 ± 0.02a 6.15 ± 0.06b 6.26 ± 0.12ab 6.41 ± 0.02a 6.04 ± 0.15b

Soil moisture
(m3/m3)

0.42 ± 0.01ab 0.45 ± 0.01a 0.43 ± 0.02a 0.42 ± 0.02ab 0.43 ± 0.01a 0.38 ± 0.01b

N (%) 0.4 ± 0.01bc 0.44 ± 0.03b 0.52 ± 0.03a 0.45 ± 0.01b 0.38 ± 0.02c 0.42 ± 0.001bc

C (%) 5.17 ± 0.27 cd 6.03 ± 0.35bc 8.68 ± 0.58a 5.43 ± 0.15bcd 4.951 ± 0.18d 6.094 ± 0.1b

S (%) 0.21 ± 0.1a 0.12 ± 0.01ab 0.11 ± 0.003ab 0.09 ± 0.004ab 0.08 ± 0.004b 0.08 ± 0.01ab

C/N 12.91 ± 0.22d 13.58 ± 0.01c 16.68 ± 0.42a 12.15 ± 0.21e 12.97 ± 0.13 cd 14.49 ± 0.31b

Soil
temperature
(°C)

15.28 ± 0.59a 14.31 ± 0.81b 11.98 ± 0.58c 17.31 ± 1.08a 15.19 ± 1.63b 12.9 ± 0.37c

Soil respiration 10.12 ± 1.07a 9.86 ± 1.29a 8.51 ± 0.99a 10.22 ± 1.08a 8.60 ± 1.29a 7.44 ± 0.99a

NHþ
4 -N
(mg · kg−1)

1.13 ± 0.83b 2.84 ± 0.76ab 3.68 ± 1.62ab 1.57 ± 1.1b 5.87 ± 1.67a 4.02 ± 1.14ab

NO�
3 -N
(mg · kg−1)

1.15 ± 0.37c 1.95 ± 0.67ab 1.18 ± 0.39c 1.28 ± 0.11c 1.32 ± 0.56bc 2.38 ± 0.55a

NO�
2 -N
(mg · kg−1)

0.19 ± 0.07b 0.29 ± 0.06a 0.2 ± 0.09b 0.21 ± 0.05b 0.16 ± 0.03b 0.25 ± 0.06ab

Values with different letters in a row means significant difference at p= 0.05. Values are means of three replicates ± SE.

FIGURE 2 The diversity index of above-ground vegetation. Samples plots include SHM, sampling plot in a meadow of a shady slope; SHT,
sampling plot in the timberline of a shady slope; SHU, sampling plot under the forests of a shady slope; SUM, sampling plot in a meadow of a
sunny slope; SUT, sampling plot in the timberline of a sunny slope; and SUU, sampling plot under the forests of a sunny slope
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Simpson index were higher in the SUU site (0.9963), and
lower in the SUM site (0.9932). The Shannon index was the
highest in the SUU site (9.76) and the lowest in the SUM site
(9.32). Overall, the species richness and diversity indices of
bacterial communities on the shady slope were higher than
those on the sunny slope. In addition, the PCoA (Figure 3)
illustrated the biogeographic pattern of bacterial communities
on a two-dimensional ordination, indicating a lower similarity
of community composition between the sampling plots.

A total of 43 bacterial phyla were identified among all
sampling plots. As shown in the Venn diagram, there were
644 shared bacterial OTUs (Supporting Information
Figure S3). There were nine bacterial phyla with a relative
abundance of 1% or more. The relative abundance of
Proteobacteria in all plots was the highest (mean relative
abundance = 33.64%) (Figure 4). The relative abundance of
Actinobacteria was the highest in the SUM site (24.27%),
whereas Acidobacteria was the highest in the SHM site
(23.43%). There were 26 bacterial genera with relative
abundances higher than 0.1%. Based on LEfSe analysis, the
most significant difference in order level between the
different slopes was detected in Acidobacteria and Rhizo-
biales (Supporting Information Figure S4). However, for the
overall microbial community structure, there were no
significant differences between the two slopes (ANOSIM,
R= 0.04, p= 0.42).

Network analysis indicated the pattern of bacterial
community interactions between different slopes (Figure 5).
There were 8mainmodules, 1224 edges, and 252 vertices that
emerged in the network. The connectability was 0.0387 and
the clustering coefficient was 0.483. Community co-occur-
rence was significantly higher compared to the exclusion
relationships, inferred from the numbers of positive corre-
lations (1189) that were far higher than those of negative
correlations (35).

3.3 | Bacterial community assembly processes

The relative contribution of deterministic processes and
stochastic processes changed along different plots, since the
null deviation varied ranging from −0.37 to −0.59 (mean
value =−0.48) (Figure 6). The null deviation on the shady

slope was−0.512 and was significantly different from that on
the sunny slope (−0.429, p< 0.05). Compared with the sunny
slope, deterministic processes played more important roles on
the microbial community in shady slope, because of the larger
deviations from random expectation.

Based on the results of the Raup-Crick metric (Figure 7),
the RC values for different slopes were negative (ranging
from −0.53 to −0.79, mean value =−0.63), indicating less
dissimilar than expected by random chance.

3.4 | Environmental filtering affects soil
bacterial community composition

The results of the PLS path modeling analysis indicated that
the direct effect of edaphic factors on microbial community
structures was 0.9736 (Figure 8), followed by vegetation and
spatial variables. Redundancy analysis (RDA) showed that
environmental factors influenced on the microbial commu-
nity structure. Results demonstrated Elusimicrobia and
Cyanobacteria were mainly shaped by TC and TN, while
NHþ

4 -N was the main abiotic driver of Bacteroidetes and
Proteobacteria.

3.5 | Environmental filtering affect soil
bacterial community metabolism

Copy numbers of 16S rRNA genes for the shady slopes (9.42)
were higher than those for the sunny slopes (8.54) (Figure 9)
(p< 0.05). Copy numbers of cbbM genes, which encode the
key enzymes of the Calvin-Benson-Bassham (CBB) cycle,
for the shady slopes (7.02) were significantly higher than
those for the sunny slopes (6.59) (p< 0.05). However, there
were no significant difference in the copy numbers of amylase
and cellulose genes on different slopes (p> 0.05). In terms of
the functions of the overall microbial community, there were
significant differences between the different slopes (ANO-
SIM, R= 0.64, p= 0.001).

TABLE 2 Diversity of soil bacterial communities in different plots

Chao1 ACE Simpson Shannon

SUM 2127 3015.25 0.9944 9.32

SUT 2633 3194.01 0.9956 9.60

SUU 2536 3192.71 0.9963 9.76

SHM 2705 3221.63 0.9958 9.61

SHT 2551 3106.75 0.9959 9.64

SHU 2552 3054.41 0.9932 9.38

FIGURE 3 Principal coordinate analysis based on Bray-Curtis
similarities of bacterial communities
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4 | DISCUSSION

Ecological processes that underlie community dynamics
govern the complicated biogeographical patterns of microbes,
and these processes have long been a hotspot of discussion in
community ecology. However, themechanisms shaping these
patterns remain poorly understood, given that the aggregate of
multiple ecological processes severely complicates the
identification of causal relationships. It is necessary to

investigate the community assembly mechanism under
different environmental contexts.

Our results from the null model analysis demonstrated
that the deviations were negative (mean value =−0.48),
which were interpreted as showing more deterministic
processes (especially environment filtering) of the commu-
nity assembly, since communities were more similar than
expected by chance. This is consistent with the results of the
RCmetric. The degree of deviation reported herein was lower
than that of a previous study focused on a soil fungal
community along a retreating glacier [14]. This could be
because bacteria may possess greater metabolic versatil-
ity [32], and are thus less affected by environmental filtering

FIGURE 4 Relative abundance of different phyla in different plots

FIGURE 5 Network analysis based on Spearman rank correlation
showing potential interactions of the bacterial communities. The node
size is proportional to a taxon's average relative abundance (log
transformation) across all samples. Lines connecting nodes (edges)
represent positive (red) or negative (blue) co-occurrence relationships.
The nodes are colored by modularity class

FIGURE 6 The null model analysis showing the null deviation of
bacterial communities on different slopes. A null deviation close to
zero suggests that stochastic processes are more important in
structuring the community, whereas larger positive or negative null
deviations suggest that deterministic processes play more important
roles
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(compared to a fungal community). The combination of both
the null model and RC metric [28,30] confirmed the
importance of environmental filtering in shaping the soil
microbial community structure in the subalpine timberline
area.

Our results demonstrated that the edaphic factors were the
main driving force of bacterial community assembly,
followed by the vegetation and spatial variables. The effect
of environmental filtering on the assembly of bacterial
community suggests that everything is everywhere, but the
environment selects [33]. A previous study have confirmed
that high environmental stress can potentially increase
environmental selection [34].

The environmental conditions in subalpine timberline
ecotones consist of pronounced climatic gradients [35] and
climosequences within short distances, with a high level of
environmental heterogeneity [36]. The harsh but homoge-
neous environmental factors could have a strongly selective
effect on the local species pools, thus reducing the
dissimilarity of the community. As nested sieves, the

environmental factors could eliminate some unsuitable
species, which keep the whole community in a state of co-
occurrence. Thus, only species that are suitable for the
environmental selection survive. Reducing the dissimilarity
of the community may be relative to the decreasing
difference in microbial community structures on different
slopes.

On the other hand, the results of this study indicate that the
biotic factors, such as interspecies relationships, had also
influenced the bacterial community structure to some extent.
Network analysis can be used to investigate the potential
interaction between microbes and the symbiosis patterns of
the dominant groups [37,38]. Our results demonstrated that
community co-occurrence was more obvious, since the
positive correlations in network indicate that the abundance of
OTUs varied along the same trend (co-occurrence) [35]. This
could be relative to the competition being more important
under high resource availability, whereas environmental
filtering prevailed during periods of high environmental
stress [39].

Previous studies have shown that microbial communities
displayed complex variation in composition across different
habitats, and this variation can have profound effects on
ecosystem functions [20,40]. This study found that the copy
numbers of cbbM genes on the shady slope were significantly
higher than those on the sunny slope, indicating a greater
carbon sequestration capability on the shady slope. In
addition, the abundance of bacteria (i.e., copy numbers of
16S rRNA genes) on the shady slope was higher than that on
the sunny slope. The intermediate disturbance hypothesis
(IDH) suggests that local species diversity is maximized,
when ecological disturbance is neither too rare nor too
frequent [41,42]. Diversity of the bacterial community on the
shady slope was higher than that on the sunny slope.
Therefore, we inferred that environmental factors on a shady
slope may cause intermediate disturbances to the microbial
community, but may increase the overall diversity of the

FIGURE 7 Mean dissimilarity according to the Raup_Crick
metric (RC) of sampling plots. The RC metric ranges from −1 to 1
and indicates whether a pair of plots is less dissimilar (approaching
−1), as similar (approaching 0), or more dissimilar (approaching 1)

FIGURE 8 Redundancy analysis (RDA) (right) and PLS path model analysis (left). In the path model, the spatial variables include PCNM1,
PCNM2, and PCNM3, which were operated by principal coordinates of neighbour matrices. Environmental variables include TC, TN, and pH,
which indicated greater contribution to microbial community structure as demonstrated RDA
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microbial community. This suggests that the higher the
diversity of the community, the more complementary taxa are
likely to be included to adapt to certain stresses on a shady
slope [43], so as to ensure that the community has a faster
ability to recover after stress [44]. Thus, bacterial communi-
ties on shady slopes could be more resilient and resistant to
varying environmental conditions. Stable communities are
conducive to species colonization and reproduction. In
addition, species richness and abundance are positively
correlated with ecosystem function [45]. For the reasons
discussed above, the microbial community on shady slope
had the highest abundance and strongest carbon sequestration
ability.

Copy numbers of amylase and cellulose genes did not
differ significantly between the different slopes, indicating
that there was no significant difference in carbon metabolism.
This may be due to many microbial taxa exhibiting carbon-
use plasticity, as taxa have been reported to be able to alter
their usage of glucose and soil organic matter depending upon
environmental conditions [46,47].

Overall, our results demonstrated that with respect to the
degree of the response to environmental filtering, the bacterial
community structure and function were not consistent. This
may be attributed to the significant difference between the
functional and taxonomic community structure, which arises
because mechanisms that lead to a convergence of metabolic
function do not necessarily lead to a convergence of
taxonomic composition [36].
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