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Assembly mechanisms of soil bacterial communities in subalpine 
coniferous forests on the Loess Plateau, China§

Microbial community assembly is affected by trade-offs be-
tween deterministic and stochastic processes. However, the 
mechanisms underlying the relative influences of the two 
processes remain elusive. This knowledge gap limits our ability 
to understand the effects of community assembly processes 
on microbial community structures and functions. To better 
understand community assembly mechanisms, the commu-
nity dynamics of bacterial ecological groups were investigated 
based on niche breadths in 23 soil plots from subalpine con-
iferous forests on the Loess Plateau in Shanxi, China. Here, 
the overall community was divided into the ecological groups 
that corresponded to habitat generalists, ‘other taxa’ and spe-
cialists. Redundancy analysis based on Bray-Curtis distances 
(db-RDA) and multiple regression tree (MRT) analysis indi-
cated that soil organic carbon (SOC) was a general descriptor 
that encompassed the environmental gradients by which the 
communities responded to, because it can explain more sig-
nificant variations in community diversity patterns. The three 
ecological groups exhibited different niche optima and de-
grees of specialization (i.e., niche breadths) along the SOC 
gradient, suggesting the presence of a gradient in tolerance 
for environmental heterogeneity. The inferred community 
assembly processes varied along the SOC gradient, wherein 
a transition was observed from homogenizing dispersal to 
variable selection that reflects increasing deterministic pro-
cesses. Moreover, the ecological groups were inferred to per-
form different community functions that varied with com-
munity composition, structure. In conclusion, these results 
contribute to our understanding of the trade-offs between 
community assembly mechanisms and the responses of com-
munity structure and function to environmental gradients.
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Introduction

Elucidating the mechanisms that govern community diversity, 
metabolic function, and biogeography patterns is a central, 
but controversial, topic in ecology (Zhou and Ning, 2017), 
particularly in microbial ecology. Deterministic processes 
comprise ecological selection mechanisms which are imposed 
by abiotic and biotic factors that then determine the presence 
or absence and relative abundances of species (Dumbrell et 
al., 2010; Ofiţeru et al., 2010; Chase and Myers, 2011). In con-
trast, stochastic processes suggest that community biogeo-
graphy patterns are simply influenced by stochastic factors, 
including ecological drift, dispersal, and speciation (Hubbell 
and BordadeAgua, 2004). In addition, the invocation of sto-
chastic processes assumes that species are all ecologically 
equivalent (Woodcock et al., 2007). The two types of ecolo-
gical processes are not mutually exclusive, but rather exist in 
a continuum (Gravel et al., 2006). However, variation in eco-
logical selection strength and the rates of dispersal can in-
fluence the relative roles of deterministic versus stochastic 
processes across temporal and spatial scales, in addition to 
within entire ecosystems (Chisholm and Pacala, 2011; Dini- 
Andreote et al., 2015). Consequently, assembly processes vary 
based on environmental conditions or the specific charac-
teristics of organisms (Zhou and Ning, 2017).
  Different ecological groups, such as generalists and spe-
cialists, exhibit different organismal traits. For example, ge-
neralists and specialists can differ in richness and have dis-
parate ecological niches. Furthermore, these ecological groups 
that exhibit different ecological dynamics can be disturbed by 
various factors (Monard et al., 2016) and may exhibit diffe-
rent responses to varying environmental conditions (Liao et 
al., 2016). Therefore, the community assembly mechanisms 
for habitat generalists may differ from those of specialists 
due to the wider habitat range of the former (Futuyma and 
Moreno, 1988; Van Tienderen, 1991). Given this supposition, 
investigating the different biogeographic patterns of eco-
logical guilds will help to deepen our understanding of mi-
crobial community assembly processes.
  Microbial community composition can vary considerably 
across spatial or environmental gradients, such as the one 
that has been observed for ocean water column communities 
(Sunagawa et al., 2015), or communities along alpine forest 
soil elevational gradients (Siles and Margesin, 2016). Impor-
tantly, this variation can affect ecosystem function (Louca 
et al., 2016). Moreover, ecological guilds can exhibit different 
community structures due to varying ecological responses 
to environmental variation. However, much less is known 
about variation in the community functions of ecological 
guilds as a consequence of environmental variation.
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  Subalpine mountain environments provide a high level of 
available microbial niches and exhibit correspondingly rich 
microbial communities (Ren et al., 2017). These environments 
are characterized by pronounced climatic gradients and cli-
mosequences over short distances, thereby leading to high 
levels of environmental heterogeneity (Siles and Margesin, 
2017). Across multiple subalpine mountain environments, 
habitat specialists and generalists are expected to be identi-
fied among bacterial communities due to different niche bre-
adths (Logares et al., 2013). Based on the above environmental 
characteristics, subalpine systems provide ideal experimental 
platforms for investigating mechanisms of microbial com-
munity assembly.
  Soil microbial community assembly, here, in subalpine forests 
was analyzed by sampling soils from 23 plots within subalpine 
mountain coniferous forests located on the Loess Plateau in 
the Shanxi province of China. To identify community com-
position, bacterial 16S ribosomal RNA genes were analyzed 
via high-throughput sequencing, and the bacterial commu-
nities were divided into generalist and specialist groups based 
on niche breadths. Based on these data, we investigated (i) 
the niche optima and degree of specialization for ecological 
groups along the environmental gradients, (ii) the roles of 
ecological groups towards overall community function, and 
(iii) the influence of ecological processes on these properties.

Materials and Methods

Site description and sampling
A total of 23 typical soil plots were sampled (Supplementary 
data Fig. S1 and Table S1) in August 2016 and 2017. The study 
sites were located in subalpine mountain coniferous forests 
between 1,900 m and 3,055 m above the mean sea level. Eight 
plots were sampled from Wutai Mountain (WT), which ex-
hibited the maximum elevation gradient of the study, rang-
ing between 1,900 m and 3,055 m above the mean sea level. 
Ten plots were sampled from the Pangquangou Natural Re-
serve (PQG) that exhibited maximum geographical distances 
and a moderate elevation gradient ranging from 1,950 m and 
2,650 m above mean sea level. Finally, five plots were sam-
pled from Luya Mountain (LY), which exhibited a minimal 
elevation gradient ranging between 2,200 m and 2,400 m 
above mean sea level. At each sample site, a 1 m × 1 m sam-
pling plot was established along the elevation gradient. Five 
soil cores at a depth of 15 cm were taken at each sampling 
plot and then pooled to form a single independent sample. 
However, this may result in one library per plot and thus there 
may also influence the variability of the bacterial communi-
ties within each plot. Soil samples were sealed in plastic bags, 
refrigerated, and immediately transported to the laboratory, 
where they were then sieved using a 2-mm mesh (germicidal 
treatment). Soil samples were then stored at -80°C for fur-
ther analysis.

DNA extraction, PCR amplification, and sequencing
Soil DNA was extracted from 1 g of soil from each sample 
using the E.Z.N.A. Soil DNA Kit (OMEGA). 16S rRNA genes 
from each sample were amplified in 25 μl reactions using 

universal bacterial PCR primers targeting the V3-V4 hyper-
variable region (341F 5 -ACTCCTACGAGGAGCA-3 and 
805R 5 -TTACCGCGGCTGCTGGCAC-3 ) (Tripathi et al., 
2018). PCR reactions were conducted with the following 
thermal cycling parameters: 95°C for 5 min (initial denatu-
ration), 30 cycles of 30 sec at 95°C (denaturation), 62°C for 
30 sec (annealing), and 72°C for 30 sec (extension), with a 
final extension for 7 min at 72°C. PCR products were puri-
fied using an Agarose Gel DNA purification kit (TIANGEN). 
DNA extract quality and quantity were then measured using 
an Infinite 200 PRO plate reader (TECAN). The DNA purity 
was assessed by A260/A280 absorbance ratios, and only those 
DNA extracts with absorbance ratios between 1.8–2.0 were 
used for further analyses. Triplicate DNA samples were ex-
tracted from each soil sample and subjected to PCR amplifi-
cation of 16S rRNA genes, then mixed and followed by pool-
ing for sequencing on the Illumina MiSeq sequencing plat-
form at Shanghai Personal Biotechnology Co., Ltd.

Bioinformatics analysis
16S rRNA gene sequencing data were analyzed using the 
QIIME (v1.8.0, http://qiime.org/) pipeline (Caporaso et al., 
2010). Filtered sequence alignments were denoised using 
the DeNoiser program (Reeder and Knight, 2010) and then 
screened for chimeras using the UCHIME algorithm (Ed-
gar et al., 2011). Sequence datasets were subsampled for each 
sample to an equal sequencing depth set as the minimum 
number of sequences reads in a sample in order to avoid bias 
due to differential sequencing depths. Sequences classified 
as Eukaryota, Archaea, and ‘unknown’ were then removed. 
The remaining 16S rRNA gene sequences were clustered into 
operational taxonomic units (OTUs) at a 90% similarity level 
using the average neighbor clustering method. The 90% OTU 
cutoff level was used because it produced OTUs with high 
abundances for subsequent analyses and circumvents poten-
tial taxonomic misclassifications due to sequencing artifacts 
(Barberán et al., 2012). In addition, the 90% nucleotide iden-
tify threshold of 16S rRNA genes corresponds roughly the 
family level of taxonomic classification (Konstantinidis and 
Tiedje, 2007; Barberán et al., 2012). OTUs were then assigned 
taxonomic identities via BLAST searches against the SILVA 
database using the k-mer searching method as implemented 
in the MOTHUR software package (Pruesse et al., 2007). 
Additional information on the 16S rRNA gene sequencing 
data are provided in Supplementary data Table S2.

Analysis of environmental variables
Soil total carbon (TC), total nitrogen (TN), and total sulfur 
(TS) were measured using an elemental analyzer (Vario EL/ 
MACRO cube). Nitrate (NO3

--N), ammonium (NH4
+-N), 

and nitrite (NO2
--N) nitrogen were measured using an Auto-

mated Discrete Analysis Instrument (CleverChem 380). Soil 
pH was measured by shaking a soil: water suspension (1:2.5 
mass/volume) for 30 min, followed by measurement with a 
pH meter (Hl 3221). Finally, soil organic matter was deter-
mined using the potassium dichromate volumetric method.

Assignment of habitat specialists and generalists
To investigate differences in the community composition 
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attributable to habitat specialist and generalist subcommu-
nities, habitat specialization of OTUs was determined using 
Levin’s niche breadth (B value) via the “niche.width” func-
tion in the “spaa” package for R (Levins, 1968; Logares et al., 
2013). OTUs with low-abundances (mean relative abundances 
< 2 × 10-5) were removed prior to these analyses (Pandit et 
al., 2009; Liao et al., 2017). The division of OTUs into eco-
logical groups followed criteria identified in previous inves-
tigations (Liao et al., 2016, 2017). Briefly, OTUs with a niche 
breadth (B) > 17 were defined as generalists, because this 
value corresponds to an outlier value of the B-value distri-
bution (Liao et al., 2016) (see Supplementary data Fig. S2). 
OTUs exhibiting B < 1.5 were regarded as specialists, which 
was selected because it is the smallest possible value for B.
  Ecological groups can be categorized into ecologically mea-
ningful units based on niche optima (Fodelianakis et al., 2016). 
Using these analyses, the responses of ecological groups can 
be investigated in context of environmental gradients. The 
Xmax value was considered as the environmental gradient at 
the sampling plot where an OTU exhibited the highest rela-
tive abundance. The average value of Xmax for ecological 
groups was then considered to be the niche optimum for 
that group.

Influences of ecological processes
To distinguish the relative importance of deterministic and 
stochastic processes in community assembly, the β-diversity- 
based null model was used, as previously described (Tucker 
et al., 2016). The implementation of this model can help to 
distinguish the relative roles of deterministic and stochastic 
community assembly processes (Condit et al., 2002; Tuomisto 
et al., 2003; Gilbert and Levin, 2004). A null deviation near 
zero suggests that stochastic processes are more important 
in driving the community, whereas larger positive or nega-
tive null deviations suggest that deterministic processes pre-
dominate (Tian et al., 2017).
  To further investigate the roles and influences of different 
community assembly processes, additional analyses were used 
as previously described (Stegen et al., 2012, 2013, 2015). The 
phylogenetic signal, which describes the relationship between 
phylogenetic relatedness and ecological similarity, was mea-
sured (Kraft et al., 2007; Fine and Kembel, 2011). Determi-
nation of the phylogenetic signal was done using the “phy-
losignal” function in the “picante” R package. In addition, the 
pairwise phylogenetic turnover between communities was 
calculated as the mean nearest taxon distance metric (βMNTD; 
Olivierj, 2008; Fine and Kembel, 2011), using the “comdistnt” 
function in the “picante” R package.
  The difference between observed βMNTD and the mean 
value of the null distribution is measured in units of standard 
deviations (of the null distribution) and is referred to as the 
β-Nearest Taxon Index (βNTI) (Stegen et al., 2013).
  For a given community, the relative influences of variable 
selection or homogeneous selection were evaluated as the 
fraction of its comparisons with βNTI > +2 or βNTI < -2, 
respectively. The Bray–Curtis-based Raup–Crick metric 
(RCbray) was calculated (Stegen et al., 2015). The relative in-
fluence of dispersal limitation was estimated as the fraction 
of a community’s |βNTI| < 2 and RCbray > 0.95. The relative 
influence of homogenizing dispersal was estimated as the 

fraction of a community’s |βNTI| < 2, and RCbray < -0.95. The 
un-dominated scenario (i.e., ecological drift) was therefore 
estimated as the fraction of a community’s |βNTI| < 2 and 
|RCbray| < 0.95 (Stegen et al., 2015).

Network analyses
OTU networks were constructed on the basis of the Spear-
man correlation matrix of OTU abundances using the psych 
package for R. OTUs are nodes in the network, while the 
edges connecting the nodes represent correlations between 
OTUs. Only those connections where correlation coefficients 
were > 0.6 and P < 0.05 were used in the network. Thus, posi-
tive correlations indicate co-occurring OTUs based on abun-
dances, whereas negative correlations indicate that the OTUs 
are mutually exclusive (Barberán et al., 2012). P-values were 
adjusted using the false discovery rate (FDR) to control for 
the analyses (FDR < 0.05; Ma et al., 2016). Network analyses 
were conducted in the igraph package for R and visualized 
in the Gephi software (http://gephi.github.io/).

Functional predictions of communities
The database for the functional annotation of prokaryotic 
taxa (FAPROTAX) was used to assign functional predictions 
to OTUS (http://www.zoology.ubc.ca/louca/FAPROTAX/ 
lib/php/index.php). The detailed evaluation of FAPROTAX 
includes direct comparison with metagenomics and genomic 
data, as previously described (Louca et al., 2016).

Statistical analyses
We used ANOVA to evaluate the differences in α-diversity 
indices, soil physicochemical properties and null deviation 
values among sites using Vegan packages for R. Principal 
coordinate analysis (PCoA) was used to visually depict the 
dissimilarity of OTU composition among samples based on 
Bray-Curtis distances. Ternary plots (Bulgarelli et al., 2015) 
were used to investigate the relative relationships of inferred 
community functions that are performed by different eco-
logical groups. We used redundancy analysis based on Bray- 
Curtis distances (db-RDA; function capscale in package ve-
gan in R) to investigate the correlation between community 
composition and environmental factors. Furthermore, the 
significance of each factor is assessed via a step-wise model 
building (function ordiR2step in package vegan in R). Sig-
nificance was assessed by Monte Carlo permutations (999 
iterations). To evaluate the multicollinearity of environmental 
attributes, variance inflation factors (VIFs) for each variable 
(after standardizing the data) were computed. The vif.cca 
function in the Vegan package for R was used to sequentially 
exclude variables with VIF > 20. Multivariate regression tree 
(MRT) analysis was used to identify the relationship between 
bacterial α-diversity estimates and environmental variables 
in a visualized tree, and diversity indices were normalized 
prior to MRT analysis. Species abundance distribution mo-
dels were fit using the sads package for R (Dumbrell et al., 
2010). Finally, analysis of similarities (ANOSIM) tests were 
conducted to statistically test for significant differences in 
soil physicochemical properties and bacterial community 
structure among sites.
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Fig. 1. Relative abundance of phyla among sites.

Fig. 2. PCoA of bacterial community dissimilarities among sampling plots.

Fig. 3. Distribution characteristics of ecological groups among sites. Each
point represents an operational taxonomic unit (OTU) specified as a ge-
neralist (blue; B > 17), other taxa (red, 1.5 < B <17), or specialist (green; 
B < 1.5). The y-axis shows mean relative abundance (log transformed) for
OTUs, and the x-axis shows OTU niche breadths.

Fig. 4. Overall relative abundances of taxo-
nomic groups within the three ecological guilds.
The pie charts from left to right represent gen-
eralists, other taxa, and specialists, respectively.

Results

Physicochemical properties of soils
Soil physicochemical properties varied significantly across 
sampling sites (ANOSIM, R = 0.79, P < 0.01) (Supplementary 
data Figs. S3 and S4). Briefly, NH4

+-N and NO2
--N were 

highest at LY (36.91 and 0.16 mg/kg, respectively) and lowest 
at WT (17.41 and 0.04 mg/kg, respectively). NO3

--N (6.45 
mg/kg), SOC (70.29 mg/g), TC (6.4%), and TN (0.51%) were 
all higher at WT than at the other two sites. Variation in pH 
was significantly associated with sampling sites (P < 0.05, 
mean = 6.21). Finally, there was no significant difference in 
TS among sites (P > 0.05, ranging from 0.06% at LY to 0.09% 
at PQG).
Community structure, composition, and species abundance 
distribution modeling of ecological groups : A total of 829 
OTUs were identified from 1,062,241 high-quality 16S rRNA 
gene sequences from 23 soil samples. Good’s coverage for 
the samples ranged from 95.19% to 99.75%, indicating that 

the majority of bacterial diversity in the soils was represented 
in the datasets. Rarefaction curve analyses yielded generally 
asymptotic curves (Supplementary data Fig. S5), further in-
dicating that the sampling effort conducted here was suffi-
cient to sample the diversity present in the soils.
  Community composition and structure significantly varied 
among sites (ANOSIM, R = 0.61, P < 0.01; Fig. 1). For ex-
ample, the relative abundances of Proteobacteria were the 
highest at PQG (37.79%), while those of Acidobacteria were 
the highest at WT (31.03%). PCoA further indicated biogeo-
graphic separation patterns of bacterial community compo-
sition among sites (Fig. 2). To further investigate community 
assembly mechanisms, ecological groups were evaluated based 
on niche breadths.
  Communities were divided into specialists, generalists and 
‘other taxa’ to identify differential distribution patterns for 
each ecological group (Fig. 3). Among all OTUs, 67 were con-
sidered as generalists (11.31%), 461 as other taxa (77.87%), 
and 64 as specialists (10.82%). The specified ecological groups 
exhibited different community structures and compositions 
(Fig. 4). Proteobacteria were the most abundant phylum among 
the three ecological groups (generalists: 16.92%; other: 17.91%; 
specialists: 21.88%), followed by Chloroflexi (12.15%, 5.97%, 
10.94%) and Bacteroidetes (8.46%, 13.43%, 4.69%). Acido-
bacteria were not detected among the generalist community 
fraction, while Proteobacteria (21.88%) were more observed 
in specialists.
  Different species abundance distribution models were fit to 
the different ecological groups (Supplementary data Fig. S6). 
Specifically, a log-series abundance distribution model was 
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Fig. 5. Network of co-occurring OTUs based on correlational analysis. 
Connections indicate strong (Spearman’s P > 0.6) and significant (P < 0.05, 
fdr = 0.05) correlations. Node size is proportional to the betweenness 
centrality of the node. Green edges connecting nodes indicate exclusion 
interactions and red edges indicate co-occurrences.

Fig. 6. Distribution of metabolic functions among the three ecological 
groups. Each point represents one metabolic function, and the size of 
each circle represents its relative abundance based on inferred functional 
genes. The position of each point is determined by the contribution of the
indicated compartments to the total relative abundance for that function.

Fig. 7. The db-RDA indicating significant 
influences of environmental factors on mi-
crobial community structure among the sam-
pling sites.

the best fit for specialists (AIC = 6622.7, P < 0.01), while log- 
normal models were the best fit for the other two ecological 
groups (generalists and other taxa) (Supplementary data Table 
S3).
  Network analysis comprised 568 OTU nodes and 11,869 
correlation edges (Fig. 5 and Supplementary data Table S4). 
The average path length of the network was 3.29, and the 
average diameter was 10. The clustering coefficient for the 
network was 0.49, and the modularity index was 0.31. A sig-
nificantly higher number of co-occurrence interactions were 
identified relative to mutual exclusion interactions in all of 
the networks, as inferred from positive correlations (11,646 
total) relative to negative correlations (223 total).

Metabolic functions of ecological groups
The metabolic functions of the bacterial communities, in 
terms of the abundances of proxy genes, differed among 
ecological groups (Fig. 6). Most metabolic functions (9 out 
of 12) were significantly more represented in the other taxa 
group compared to specialists and generalists. These func-
tions included aerobic ammonia oxidation (mean abundance 
= 1,003), aerobic chemo-heterotroph (1,181), aerobic nitrite 
oxidation (1,137), chemo-heterotroph (1,279), nitrification 
(2,340), nitrate respiration (69), oxygenic photoautotroph 
(242), photoautotroph (242), phototroph (240). The abun-
dances of a few metabolic functions (2 out of 12) were higher 
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Fig. 10. Effect of SOC on βMNTD of bacterial communities across all sam-
pling plots. Blue line shows a linear regression.

Fig. 8. Niche optima of ecological groups. Points represent the mean rela-
tive abundance values of ecological groups along the SOC gradient. The 
niche optimum is defined as the average SOC value of the sample where 
the maximum relative abundance of each ecological group was observed. 
The blue square represents generalists; red dot represents other taxa; green
triangle represents specialists. The y-axis error bars represent the standard 
deviation of the mean relative abundance and x-axis error bars represent 
the standard deviation of the average niche optimum of each group. Dif-
ferent letters represent significant differences in P < 0.05 level.

Fig. 9. Null deviation for bacterial communities for the three ecological 
groups. A null deviation of about zero indicates that stochastic processes 
are more important in structuring the community, whereas larger posi-
tive or negative null deviations suggest that deterministic processes are 
more important. Different letters represent significant differences at the 
P < 0.05 level between sites.

Fig. 11. Boxplot showing the βNTI distribution among sites. Horizontal 
dashed lines indicate upper and lower significance thresholds at βNTI = 
+2 and −2, respectively. The relative influences of variable selection or 
homogeneous selection were evaluated as the fraction of its comparisons 
with βNTI > +2 or βNTI < −2, respectively. The relative influence of dis-
persal limitation or homogenizing dispersal were evaluated as the frac-
tion of its comparisons with |βNTI | < 2.

in the generalist group, including methanol oxidation (36) 
and methylotrophy (37). Finally, nitrate respiration was most 
represented (69) in the specialist group populations.

Correlation of environmental factors to different ecological 
groups
According to results of db-RDA, environmental factors sig-
nificantly influenced bacterial community structure (permu-
tation test, P < 0.01) (Fig. 7). Furthermore, the results of step- 
wise model demonstrated SOC was the most important 
factors, follow by TN and pH. Multivariate regression tree 
analysis (MRT) (Supplementary data Fig. S7) indicated that 
normalized diversity estimates were mainly attributable to 

SOC that explained 36.75% of the variation (in the first spilt), 
followed by pH (6.68%). Given its contribution to explaining 
community diversity patterns, SOC was further used as a 
descriptor for environmental gradients.
  Along the SOC gradient, the niche optima of ecological 
groups were significantly differentiated (generalists: 45.41; 
other: 53.15; specialists: 55.19; P < 0.05) (Fig. 8). Following 
from this observation, SOC can be inferred as the selective 
force determining how widely OTUs are distributed across 
the sites analyzed here.
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The influence of ecological processes on assembly mechanisms
Null deviation values varied among sites (ranging 0.32–0.54; 
Fig. 9). The bacterial community structure at WT deviated 
more considerably from the null-expected value (relative 
null deviation = 0.46), followed by those at PQG (0.39) and 
those at LY (0.36). Thus, bacterial community assembly at 
WT was more relatively driven by deterministic processes 
compared to those at LY that were more relatively driven 
by stochastic process.
  Soil microbial communities along the SOC gradient ex-
hibited a strong phylogenetic signal (K = 0.32, P < 0.01), in-
dicating that more closely related bacterial taxa shared more 
similar niche partitioning. βNTI increased with increasing 
SOC (R = 0.55, P < 0.01) (Fig. 10). Finally, the microbial com-
munities at WT (βNTI = 2.34) and PQG (2.11) were both 
shaped to a greater extent by variable selection (βNTI > 2), 
while those at LY were more shaped by homogenizing dis-
persal (|βNTI| < 2 and RCbray < -0.95) (Fig. 11 and Supple-
mentary data Table S5).

Discussion

Deterministic and stochastic processes can represent two 
complementary components along a continuum of ecological 
processes that shape community structures (Chase and Myers, 
2011; Zhou and Ning, 2017). This continuum varies based 
on environmental conditions or the characteristics of orga-
nisms inhabiting the environments (Zhou and Ning, 2017; 
Tripathi et al., 2018). A previous study indicated that fungal 
communities were initially strongly governed by determini-
stic processes, but later less so when extending along a well- 
established glacier forefront chronosequence, as based on 
same analysis method of this study (i.e., β-diversity-based 
null model) (Tian et al., 2017). The level of deviation reported 
herein is lower than that which was reported for the soil fun-
gal communities. One explanation for this difference is that 
bacteria may possess greater metabolic functional plasticity 
(Massana and Logares, 2013), thereby rendering them less 
influenced by environmental filtering compared to fungal 
communities.
  The microbial communities at WT (βNTI = 2.34) and PQG 
(βNTI = 2.11) were both shaped by variable selection. This 
may be due to the high elevational gradients present at WT 
and the larger sampling scales at PQG that could lead to 
higher environmental heterogeneity. Previous studies have 
confirmed that shifts in selective pressure resulting from shifts 
in environmental conditions could be the primary cause of 
high compositional turnover, and this is referred to as vari-
able selection (Dini-Andreote et al., 2015). In contrast, the 
microbial communities at LY were more driven by homog-
enizing dispersal (|βNTI| < 2 and RCbray < -0.95). This ob-
servation may be related to the smaller elevational gradient 
and sampling scales at the LY site. Shorter geographical dis-
tances and flat landscapes may contribute to the dispersal of 
bacterial cells. High dispersal rates potentially homogenize 
community compositions, thereby leading to lower compo-
sitional turnover and thus less deviation from the null model 
(Leibold et al., 2010). In principle, high dispersal rates can 
overwhelm selection-based influences at the population level 

(Dias, 1996).
  The taxa that are not generalists or specialists, but fall in 
the continuum between the two (defined as ‘other taxa’ here), 
play an important role in ecosystems. Importantly, ecological 
groups can have potentially different ecological responses 
to varying environmental conditions (Liao et al., 2016). Our 
results demonstrate that ecological groups exhibit different 
niche optima and degrees of specialization (i.e., niche bre-
adths) along gradient of SOC. Given this observation, we infer 
that the ecological groups we defined represent a tolerance 
gradient to environmental heterogeneity, which is consistent 
with previous analyses (Kolasa and Li, 2003).
  The results reported here indicate that SOC can act as a 
stringent environmental filtering and lead to changes in phy-
logenetic diversity patterns. Relationships between SOC and 
bacterial community assembly has also been observed across 
a broad range of microbial ecosystems (Bastida et al., 2013). 
For example, SOC decomposition rate was significantly and 
positively correlated to total microbial biomass, bacterial bio-
mass, Actinomycete PLFAs, and soil enzyme activities along 
the northern slope of Changbai Mountain (Xu et al., 2015).
  The community assembly processes identified here varied 
along the SOC gradient with a transition from homogeni-
zing dispersal to variable selection. Previous studies have 
suggested that the relative influences of stochastic and de-
terministic community assembly processes can vary with suc-
cessional age of soils that can primarily be attributable to soil 
pH co-varying with age (Tripathi et al., 2018). This suggests 
that the degree to which stochastic and deterministic pro-
cesses shape soil bacterial community assembly is a conse-
quence of soil pH rather than successional age, per se (Tri-
pathi et al., 2018). Following this observation, we hypothe-
size that the community assembly processes varied among 
sites due to SOC variation among sites. In addition, the as-
sembly mechanisms of habitat generalists may differ from 
specialists (Futuyma and Moreno, 1988; Van Tienderen, 1991), 
and this could be related to their different ecological responses, 
like the differential preferences and degrees of specialization 
along the SOC gradient investigated here.
  Microbial communities can display complex patterns of 
variation in composition across environmental contexts, and 
this variation can affect potential metabolic functions and 
ecosystem functions (Louca et al., 2017). Our results indicate 
that different ecological groups have the potential to per-
form different community functions as a consequence of dif-
ferent community compositions and structures.

Conclusion

Our results demonstrate that microbial community assembly 
processes varied along a gradient in SOC, wherein a transi-
tion from homogenizing dispersal to variable selection was 
observed. The ecological groups defined here exhibit differen-
tial tolerances for environmental heterogeneity. The assembly 
mechanisms inferred differed among ecological groups, and 
this could be related to differences in niche optima and degrees 
of specialization for groups (i.e., niche breadths) along the en-
vironmental gradient. Moreover, the ecological groups exhi-
bited differential community functional potentials that varied 
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with community composition and structure.
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